Journal of Engineering Sciences / Журнал інженерних наук

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326

Browse

Search Results

Now showing 1 - 10 of 19
  • Item
    Effect of erosion on surface roughness and hydromechanical characteristics of abrasive-jet machining
    (Sumy State University, 2024) Baha, V.; Pitel, J.; Павленко, Іван Володимирович; Pavlenko, Ivan Volodymyrovych
    The article contains the fundamental results of the experimental and numerical investigations for pneumoabrasive unit nozzles with different geometries. The research was purposed by the pressing need to develop an inexpensive and effective working nozzle design of the air-abrasive unit which can be applied for surface processing before some technological processes are performed, as well as for surface coating, descaling after thermal treatment, processing of hollow holes of the crankshafts, smoothing of the inner surfaces of the narrow channels between the impeller blades after electric discharge machining for ultrahigh-pressure combination compressors. Several designs were considered, ranging from the simplest to those with a complicated inner channel geometry. The impact of the nozzle material and challenging inner surface application on its characteristics has also been studied. The research was done using the application of modern CFD complexes for numerical modeling of the air-abrasive mixture discharge from the working nozzle of the pneumo-abrasive unit. In addition, physical experimentation was provided. The methods applied in the research allow for profound, systematic research of spraying units operating on the air-abrasive mixture within a wide range of geometrical and mode parameters. The novelty of the gained results lies in the development of the mathematical model of the pneumo-abrasive nozzle operating process, the working out of a cheaper nozzle design, getting information about air-abrasive mixture distribution along the nozzle length, giving practical recommendations for calculation and designing a working nozzle for the jet-abrasive unit.
  • Item
    Design and manufacturing of polymer composite materials using quality management methods
    (Sumy State University, 2023) Берладір, Христина Володимирівна; Берладир, Кристина Владимировна; Berladir, Khrystyna Volodymyrivna; Mitalova, Z.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Trojanowska, J.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Руденко, Павло Володимирович; Руденко, Павел Владимирович; Rudenko, Pavlo Volodymyrovych
    Many factors influence the design and manufacturing of products from polymer composite materials. The expert assessment method was applied in the article for the corresponding analysis. A cause-and-effect diagram was built as a result of a preliminary analysis of the influence of factors on the primary indicator of product quality indicators (e.g., wear resistance). Based on the expert assessment results and quality function deployment analysis, the most critical factors affecting wear resistance were obtained: polymer brand, filler shape and size, technological parameters of mixing, pressing, sintering, and mechanical processing. Their impact was studied to establish quantitative dependencies. A stable value of the wear resistance of the product in the manufacturing process can be ensured by timely adjustment of the mixing, pressing, and sintering modes. As a result of the structural analysis of the process of developing materials with predetermined properties at the enterprise according to the IDEF0 methodology, the importance of assessing the risks associated with the process of multi-criteria optimization of their main quality indicators was confirmed.
  • Item
    Movement monitoring system for a pneumatic muscle actuator
    (Sumy State University, 2023) Соколов, Олександр Сергійович; Соколов, Александр Сергеевич; Sokolov, Oleksandr Serhiiovych; Hosovsky, A.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    Recent advancements in soft pneumatic robot research have demonstrated these robots’ capability to interact with the environment and humans in various ways. Their ability to move over rough terrain and grasp objects of irregular shape, regardless of position, has garnered significant interest in developing new pneumatic soft robots. Integrating industrial design with related technologies holds great promise for the future, potentially bringing about a new lifestyle and revolutionizing the industry. As robots become increasingly practical, there is a growing need for sensitivity, robustness, and efficiency improvements. It is anticipated that the development of these intelligent pneumatic soft robots will play a critical role in serving the needs of society and production shortly. The present article is concerned with developing a system for monitoring a pneumatic robot’s parameters, including a spatial coordinate system. The focus is on utilizing the relationship between the coordinates and pressure to model the movement of the soft robot within the MATLAB simulation environment.
  • Item
    Rotor dynamics of turbocompressor based on the finite element analysis and parameter identification approach
    (Sumy State University, 2022) Вербовий, Антон Євгенович; Вербовой, Антон Евгеньевич; Verbovyi, Anton Yevhenovych; Хоменко, Владислав Володимирович; Хоменко, Владислав Владимирович; Khomenko, Vladyslav Volodymyrovych; Neamtu, C.; Pavlenko, V.; Симоновський, Віталій Іович; Симоновский, Виталий Иович; Symonovskyi, Vitalii Iovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    The article is devoted to improving methods for designing a finite element model of rotor dynamics. For this purpose, numerical implementation of the authors’ computer program “Critical frequencies of the rotor” was developed based on the computer algebra system MathCAD. As a result of the scientific work, a refined mathematical model of rotor dynamics using finite beam elements was created. This model considers the dependence of the radial stiffness characteristics of the bearing supports on the values of the critical frequencies. The reliability of the mathematical model was justified by the permissible differences of the obtained results within 2% compared with the results of finite element analysis using the ANSYS software. The theorem was also proven by the mutual location of the spectra of the natural and critical frequencies. Overall, the proposed scientific approach reduces preparation and machine time compared to numerical modeling using the ANSYS software without losing the accuracy of the calculations.
  • Item
    The efficiency of collaborative assembling cells
    (Sumy State University, 2022) Андрусишин, Владислав Костянтинович; Андрусишин, Владислав Костантинович; Andrusyshyn, Vladyslav Kostiantynovych; Luscinski, S.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    To produce competitive products, it is necessary to consider their permanent modernization and adaptation to the emerging needs of a consumer. This feature of up-to-date production inevitably leads to design complexities. As a result, the complexity of a technological assembly process increases, which is a new challenge for enterprises. Simultaneously, in most cases, assembly operations are performed manually due to the complexity or impossibility of automating the assembling process for an extensive range of products. This fact is due to the insufficient flexibility of automation systems. Remarkably, this approach has significant drawbacks, i.e., low productivity and risk of chronic diseases. To solve this problem, the use of collaborative systems was proposed. Such systems have the advantages of both humans and automation tools. As a result, industrial robots can be applied as automation tools. However, when using industrial robots next to workers, the safety requirements are significantly increased since the infliction of industrial injuries is unacceptable. After considering all the above, the article deals with a new scientific and methodological approach to designing security systems of collaborative production cells and their design and effectiveness verification.
  • Item
    Impact of the closed, semi-opened, and combined contra-rotating stages on volume loss characteristics
    (Sumy State University, 2022) Куліков, Олександр Андрійович; Куликов, Александр Андреевич; Kulikov, Oleksandr Andriiovych; Ратушний, Олександр Валерійович; Ратушный, Александр Валерьевич; Ratushnyi, Oleksandr Valeriiovych; Moloshnyi, O.; Івченко, Олександр Володимирович; Ивченко, Александр Владимирович; Ivchenko, Oleksandr Volodymyrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    The article is devoted to studying the contra-rotating stages with different impellers and blade discs. Determining the reduction of volumetric losses by modeling the contra-rotating stages in the software package ANSYS CFX. The work aimed to create and study the flow and characteristics: semi-open, closed impellers, and blade discs. As a result of the work, the following contra-rotating stages were determined and compared: the semiopened impeller with the semi-opened blade disc; the closed impeller with the closed blade disc; the semi-opened impeller with the closed blade disc; the closed impeller with the semi-opened blade disc. As a result of research, fluid flows in contra-rotating stages and their characteristics in the form of pressure and efficiency were obtained. According to the obtained data, the expediency of using contra-rotating stages as a working body of the pump is written.
  • Item
    Parameter identification of nonlinear bearing stiffness for turbopump units of liquid rocket engines considering initial gaps and axial preloading
    (Sumy State University, 2021) Вербовий, Антон Євгенович; Вербовый, Антон Евгеньевич; Verbovyi, Anton Yevhenovych; Хоменко, Владислав Володимирович; Хоменко, Владислав Владимирович; Khomenko, Vladyslav Volodymyrovych; Neamtu, C.; Pavlenko, V.; Cherednyk, M.; Вашист, Богдан Вікторович; Вашист, Богдан Викторович; Vashyst, Bohdan Viktorovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    This article is devoted to developing a mathematical model of nonlinear bearing supports for turbopump units of liquid rocket engines considering initial gaps and axial preloading. In addition to the radial stiffness of the bearing support, this model also considers the stiffness of the bearing cage, the rotational speed of the rotor, axial preloading of the rotor (due to which the inner cage shifts relative to the outer, changing the radial stiffness of the support), as well as radial gaps between contact elements of the bearings. This model makesit possible to calculate the stiffness of the bearing supports more accurately. The proposed model is realized using both the linear regression procedure and artificial neural networks. The model’s reliability is substantiated by the relatively small discrepancy of the obtained evaluation results with the experimental data. As a result, this model will allow determining the critical frequencies of the rotor with greater accuracy. The results have been implemented within the experience of designing turbopump units for State Company “Yuzhnoye Design Office”.
  • Item
    Experimental studies on oscillation modes of vibration separation devices
    (Sumy State University, 2021) Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Volf, M.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Ляпощенко, Олександр Олександрович; Ляпощенко, Александр Александрович; Liaposhchenko, Oleksandr Oleksandrovych
    Despite the rapid development of alternative energy sources, the role of hydrocarbons in the global fuel and energy balance remains significant. For their transportation and further processing, pre-processing is carried out using a set of equipment. In this case, the mandatory devices are separators. In terms of specific energy consumption and separation efficiency, methods based on the action of inertia forces are optimal. However, standard designs have common disadvantages. A method of dynamic separation is proposed to eliminate them. The proposed devices are automatic control systems. The object of regulation is hydraulic resistance, and elastic forces are the regulating actions. Aerohydroelastic phenomena accompany the operation of dynamic separation devices. Among them, the most interesting are flutter and buffeting. Oscillations of adjustable baffles accompany them. It is necessary to conduct a number of multifactorial experiments to determine the operating parameters of dynamic separation devices. In turn, physical experiments aim to identify patterns and features of processes occurring during vibration-inertial separation (i.e., the dependence of various parameters on velocity). Therefore, the article proposes a methodology for carrying our physical experiments on dynamic separation and a designed experimental setup for these studies. As a result, the operating modes of separation devices for different thicknesses of baffle elements were evaluated. Additionally, the dependences of the adjustable element’s deflections and oscillation amplitudes on the gas flow velocity were determined for different operating modes of vibration separation devices.
  • Item
    Numerical simulation of the perforated shell’s oscillations in a vibrational priller
    (Sumy State University, 2020) Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Volf, M.; Скиданенко, Максим Сергійович; Скиданенко, Максим Сергеевич; Skydanenko, Maksym Serhiiovych; Yakovchuk, V.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Ляпощенко, Олександр Олександрович; Ляпощенко, Александр Александрович; Liaposhchenko, Oleksandr Oleksandrovych
    The widespread catalysts and nuclear fuel production are the sol-gel technology, including several stages, namely, the raw materials preparation, dispersing it into drops, the granules formation in gas and then in liquid media, granules removal with liquid separation. The vibration granulator is proposed to use on the dispersion stage. One of the problems in their development is determining the vibrational characteristics of a perforated bucket filled with liquid to a certain level. Considering that vibrations are transmitted from the emitter disk through the liquid melt and cause vibrations of the perforated shell, in research, it was decided to use the Fluent Flow and the Transient Structural modules of the ANSYS Workbench software. As a result, numerical simulation results of the emitter disk vibration effect on the cylindrical body are presented. Also, parameters of a discrete mathematical model are evaluated by the bucket vibrations characteristics. The corresponding model considers the inertial, stiffness, and damping properties of functional elements. Additionally, according to the modal analysis results of the priller body, it was determined the eigenfrequencies of the hydromechanical system. Finally, based on the numerical simulation results and their analysis using Fourier transformations, it was determined that the oscillations of the lower part of the bucket, consisting of two harmonic oscillations that equal 230 Hz and 520 Hz.
  • Item
    The Solution of the Stationary Aeroelasticity Problem for a Separation Channel with Deformable Sinusoidal Walls
    (Sumy State University, 2020) Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Volf, M.; Pavenko, V.; Ляпощенко, Олександр Олександрович; Ляпощенко, Александр Александрович; Liaposhchenko, Oleksandr Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    One of the most urgent problems concerning the design of inertial separation devices is the failure of the trapped liquid film from the contact surfaces due to the contact with the turbulent gas-liquid flow. For extension of the range of the effective inertial separation, a method of dynamic separation was proposed using the developed separation device with deformable sinusoidal walls. In this regard, the article is aimed at the development of the general methodology for the determination of the impact of hydrodynamic characteristics on the shape parameters for the deformed separation channel. The proposed approach is based on both physical and geometrical models. The first one allows obtaining compliance of deformable walls as a result of pressure distribution in the separation channel as a result of numerical simulation. The second one allows for obtaining variations of the main geometrical parameters of the proposed model using transfer functions. The relevancy of the proposed methodology was proved by the values of the relative errors for evaluating the variations of the amplitude and the radius of curvature.