Rotor dynamics of turbocompressor based on the finite element analysis and parameter identification approach

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Sumy State University
Article

Date of Defense

Scientific Director

Speciality

Date of Presentation

Abstract

The article is devoted to improving methods for designing a finite element model of rotor dynamics. For this purpose, numerical implementation of the authors’ computer program “Critical frequencies of the rotor” was developed based on the computer algebra system MathCAD. As a result of the scientific work, a refined mathematical model of rotor dynamics using finite beam elements was created. This model considers the dependence of the radial stiffness characteristics of the bearing supports on the values of the critical frequencies. The reliability of the mathematical model was justified by the permissible differences of the obtained results within 2% compared with the results of finite element analysis using the ANSYS software. The theorem was also proven by the mutual location of the spectra of the natural and critical frequencies. Overall, the proposed scientific approach reduces preparation and machine time compared to numerical modeling using the ANSYS software without losing the accuracy of the calculations.

Keywords

centrifugal machine, process innovation, critical frequency, finite element analysis, Campbell diagram

Citation

Verbovyi A., Khomenko V., Neamtu C., Pavlenko V., Simonovskiy V., Pavlenko I. (2022). Rotor dynamics of turbocompressor based on the finite element analysis and parameter identification approach. Journal of Engineering Sciences, Vol. 9(2), pp. D1-D5, doi: 10.21272/jes.2022.9(2).d1

Endorsement

Review

Supplemented By

Referenced By