Journal of Engineering Sciences / Журнал інженерних наук

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326

Browse

Search Results

Now showing 1 - 10 of 54
  • Item
    Mechanical properties and stress analysis of natural fiber reinforced polymer composite spur gear
    (Sumy State University, 2024) Jayaraj, M.; Ashok, S.K.; Thirumurugan, R.; Shanmugam, D.; Mahendran, M.
    This research study investigates the mechanical properties of polymer composites reinforced with natural fibers, specifically Palmyra palm leaf stalk fiber (PPLSF) and Palmyra palm primary leaf stalk fiber (PPFLSF). Tensile, flexural, and impact strength were among the composites’ mechanical parameters generated by integrating these fibers into a polymer matrix and assessing them experimentally. Additionally, stress analysis of a spur gear was conducted using the finite element analysis software ABAQUS. The composite material properties obtained from the experimental investigation were used in the analysis to evaluate the gear’s stress distribution and deformation behavior. The bending stress at the pitch point of the natural composite gears for PPLSF, PPFLSF, and nylon synthetic material is analyzed using analytical and experimental methods by ABAQUS software. Finally, the results are compared with each other. The results show that stress induced by nylon is comparatively higher than that of PPLSF and PPFLSF fiber. By analyzing these composites’ strength, durability, and stress distribution under operating environments, the study aims to determine whether they are suitable substitutes for conventional materials.
  • Item
    Multi-performance optimization of the mechanical characteristics of basalt fiber and silicon carbide-filled aluminum matrix composites
    (Sumy State University, 2024) Veeranaath, V.; Dinesh, S.G.; Natarajan, G.
    In the existing state, aluminum metal matrix composites (AlMMCs) are a category of materials that have successfully fulfilled the majority of demanding requirements in applications where moderate strength, high stiffness, and lightweight are necessary. This paper is focused on processing aluminum hybrid composites by reinforcing the aluminum alloy with a novel combination of fillers: basalt fibers and silicon carbide via stir casting. The main aim is to study the impact of processing conditions on the properties of the developed composite. Nine samples are produced by varying the reinforcement content, stirring rate, and duration based on the L9 Taguchi Array. SEM analysis is utilized to examine the microstructure of the developed composites. The samples were also machined and tested for their mechanical, physical, and wear behavior as per ASTM standards. The maximum density and hardness of 2883.3 kg/m3 and 45.6 HRB, respectively, are observed at higher filler content conditions. In contrast, the minimum specific wear rate, maximum ultimate tensile, and impact strength of 1.86·10–5 mm3 /(N·m), 263.5 MPa, and 93 N/mm are observed in higher stirring duration conditions. So, to avoid conflicting combinations of optimal input factors, grey relational analysis (GRA) tied with principle component analysis (PCA) is employed to determine the multi-objective performance parameter and the optimal combination of input factors for better response. Confirmatory tests were also performed to verify and validate the same. ANOVA analysis is also utilized to assess the significance of the process parameters on the responses.
  • Item
    Effect of erosion on surface roughness and hydromechanical characteristics of abrasive-jet machining
    (Sumy State University, 2024) Baha, V.; Pitel, J.; Павленко, Іван Володимирович; Pavlenko, Ivan Volodymyrovych
    The article contains the fundamental results of the experimental and numerical investigations for pneumoabrasive unit nozzles with different geometries. The research was purposed by the pressing need to develop an inexpensive and effective working nozzle design of the air-abrasive unit which can be applied for surface processing before some technological processes are performed, as well as for surface coating, descaling after thermal treatment, processing of hollow holes of the crankshafts, smoothing of the inner surfaces of the narrow channels between the impeller blades after electric discharge machining for ultrahigh-pressure combination compressors. Several designs were considered, ranging from the simplest to those with a complicated inner channel geometry. The impact of the nozzle material and challenging inner surface application on its characteristics has also been studied. The research was done using the application of modern CFD complexes for numerical modeling of the air-abrasive mixture discharge from the working nozzle of the pneumo-abrasive unit. In addition, physical experimentation was provided. The methods applied in the research allow for profound, systematic research of spraying units operating on the air-abrasive mixture within a wide range of geometrical and mode parameters. The novelty of the gained results lies in the development of the mathematical model of the pneumo-abrasive nozzle operating process, the working out of a cheaper nozzle design, getting information about air-abrasive mixture distribution along the nozzle length, giving practical recommendations for calculation and designing a working nozzle for the jet-abrasive unit.
  • Item
    Computational approach to geometric modeling of plow bodies
    (Sumy State University, 2024) Yablonskyi, P.; Rogovskii, I.; Sobczuk, H.; Virchenko, G.; Volokha, M.; Vorobiov, O.
    In this article, a detailed analysis of modern research and publications on the selected subject was carried out related to the computer-variant geometric modeling of the working surfaces of the plow blades. Based on this, a new method of proper design was proposed. The performed scientific investigations aimed to create a flexible, productive, and universal approach for the automated shaping of tillage tools. The accentuated effectiveness of geometric modeling was achieved using a developed special mathematical apparatus adapted for use in the environment of current computer information systems of an engineering profile. The implementation was based on such parametric lines as heterogeneous rational B-splines, which are acceptable in automated design systems. The specified geometric models were characterized by the coverage of a sufficiently large range of plow heads. The indicated means of forming could conveniently adapt to the changing conditions of designing tillage tools suggested by theoretical calculations and practical experiments. The given facts contributed to the multifaceted clarification of the specified information. They also ensured the appropriate integration and the possibility of determining the most rational options among the studied varieties of plow dumps. Simultaneously, the most common group of dumps with cylindrical and other plow working surfaces was considered. The significant role of geometric models for qualitative coordination and the effective combination of many other models (e.g., strength, manufacturing technology, and operation conditions) was emphasized. This was aimed at comprehensive optimization throughout their life cycle, in this case of plows. The proper solution to the presented problems contributed to a successful solution to the actual scientific and applied problem of improving the quality of machinery.
  • Item
    Kinematic characteristics of deformed porous structures
    (Sumy State University, 2024) Veselovska, N.; Sivak, R.; Paladiychuk, Y.; Bandura, V.; Telyatnik, I.; Bohatiuk, M.; Savkiv, V.; Edl, M.
    Experimental and computational methods of studying the stress state in the plastic region are characterized by various methods and accuracy of measurements, methods of mathematical processing of experimental information, and interpretation of results. The experimentally determined kinematics as a starting point is the most widely used method to study the stress-strain state in the plastic region. When studying the process of plastic deformation of porous blanks, the model of a rigid-plastic isotropic-strengthening porous body with a loading surface that has the shape of an ellipsoid with semi-axes. It depends on the amount of porosity and the ratio of the associated flow law as a mechanical model of the material. In the axisymmetric extrusion of porous blanks, the viscoplasticity method was used to determine the field of flow velocities based on the results of experimental studies. R-functions were applied to approximate experimentally obtained values. The problem of finding approximations was formulated in a variational statement. Cubic splines of one argument were used to interpolate functions. As a result, an approach was proposed, which consists of a particular sequence of calculating the derivatives of the coordinates of the nodes in time in combination with the R-functions approach. All the calculations were performed in Euler variables, eliminating the need to switch from Lagrangian variables and simplifying the solution. Additionally, this method allowed for working with an irregular and non-rectangular grid in areas with any shape of boundaries. This approach is more effective from the point of view of the approximation’s accuracy and the speed of calculations. Finally, the equation for calculating the porosity in the volume of the deformable workpiece based on the information about the distortion of the dividing grid elements was obtained. For stationary axisymmetric processes, a technique was developed that allowed for replacing the calculation of the accumulated deformation of the base material along the deformation trajectory by integration over the region. A technique was developed for determining the stress-strain state at unstable and stable stages of axisymmetric plastic deformation of porous blanks. The calculation results were compared based on the proposed experimental and calculation techniques and the finite element method.
  • Item
    Utilization of plastic waste in reinforcing sandy soil for sustainable engineering applications
    (Sumy State University, 2024) Suthar, L.; Meena, S.; Kumar, U.
    Large quantities of polyethylene terephthalate (PET) plastic are discarded into the environment during production, application, and disposal. Although current clean-up strategies aim to mitigate the adverse impacts of PET pollution, efforts struggle to keep up with the escalating amount of PET waste. This accumulation of PET waste poses significant threats to ecosystems worldwide. One recycling method for PET plastic waste involves its utilization in soil reinforcement applications within civil engineering. By incorporating PET plastic waste to reinforce poor-quality sands, sustainable construction practices can be promoted in civil engineering infrastructures, addressing multiple aspects of sustainability, including engineering, economic, social, and environmental considerations. The experimental work conducted in this research involved sieve analysis, proctor compaction test, California Bearing Ratio (CBR) test, and direct shear box test. The sand was reinforced with varying percentages of PET plastic waste flakes, namely 5, 10, and 15 %, with respect to the weight of the soil sample taken for the test, and laboratory tests were performed on the samples. Including PET plastic flakes enhanced various soil properties, such as shear strength and friction angle. It also improved the CBR value of the composite, making it suitable for pavement construction. The reduction in dry density further supports the application of the composite in lightweight structures. In conclusion, the geotechnical material obtained from the soil-PET plastic waste composite can be utilized in various geotechnical projects, including landfills and slope stabilization.
  • Item
    Methodology for service life evaluation of screens welded structures
    (Sumy State University, 2024) Shkut, A.P.
    The methodology of research on welded assemblies for fastening vibrators is based on modern software products, in particular SolidWorks Simulation in combination with SolidWorks Motion and hot spot stress (HSS) technology. It has been determined that the research on welded assemblies using the SolidWorks Education Edition software package is expedient, considering the most unfavorable situation, when there is a lack of fusion of edges. The solid-state model displays a lack of fusion as a gap between the welded parts. The research on the stress-strain state of welded structures using the finite element method shows that when the computational mesh cell size is reduced, the stress increases significantly, indicating the model singularity and the need for further application of the HSS technology. Research has revealed that the maximum stresses occur in those points of the welds where the longitudinal middle rib is connected to the plate and pipe. It has been determined that the service life of welded joints will exceed 2·106 cycles. To assess the accuracy of calculating the dynamic forces arising during the screen operation, the modeling results using the SolidWorks Motion program are compared with those classical methods that use the Lagrange equation of the second kind. It turned out that the calculation error does not exceed 30 %.
  • Item
    The influence of the design features of the submersible pump rotor on the vibration reliability
    (Sumy State University, 2024) Маківський, Олексій Сергійович; Makivskyi, Oleksii Serhiiovych; Кондусь, Владислав Юрійович; Kondus, Vladyslav Yuriiovych; Pitel, J.; Сотник, Микола Іванович; Sotnyk, Mykola Ivanovych; Андрусяк, Владислав Олегович; Andrusiak, Vladyslav Olehovych; Полковниченко, Вадим Валентинович; Polkovnychenko, Vadym Valentynovych; Муштай, Максим Валерійович; Mushtai, Maksym Valeriiovych
    Pumping equipment consumes about 20 % of the electrical energy produced by humankind. A significant, even drastic, reduction in the weight and size indicators of pumping equipment leads to a decrease in the cost price and, therefore, competitiveness of such products in the market. Simultaneously, it makes it possible to use more valuable and high-quality construction materials and technologies that improve the reliability of equipment and its energy efficiency, which in turn is a clear step in solving many UN Sustainable Development Goals (SDGs). According to the research results, it was proved that by increasing the frequency of the drive, it is possible to reduce the mass and size indicators of the submersible pump for the needs of the critical infrastructure sector by reducing the number of stages. Mainly, the amplitudes of oscillations near the rotation frequency are 12–22 % and do not exceed 35 % of the gaps in the seals, as required by the available international standards to ensure the guaranteed vibration reliability of the pump. Overall, using a bearingless support design will significantly increase the reliability of the developed pump.
  • Item
    The distribution pattern of machining errors on woodworking machine tools
    (Sumy State University, 2023) Pylypchuk, M.I.; Dziuba, L.F.; Mayevskyy, V.O.; Kopynets, Z.P.; Taras, V.I.
    The article aims to develop a methodology for calculating and predicting the distribution patterns of wood machining errors to assess the operating conditions of the machine tool according to the technological accuracy criterion. It was analytically proven and experimentally confirmed that Weibull’s law accurately describes the distribution pattern of machining errors on woodworking machines. Based on the results of experimental studies of the accuracy of machining on machines for lengthwise sawing and plano-milling of wood, it was found that the primary indicator of the Weibull distribution law is a shape parameter that takes values within 1.89–3.11. The computational algorithm was developed for statistical modeling of the pattern of the distribution of machining errors according to the Weibull distribution law. It allows for determining the main parameters of the error distribution law and evaluating the operating conditions for the machine tool according to the technological accuracy criterion. The statistical modeling results for the distribution pattern of machining errors are correlated with the experimental data with an accuracy of up to 5 %, which confirms the reliability of the obtained simulation results. The developed approach also minimizes the restoration cost for the machine’s operability.
  • Item
    Cutting forces simulation for end milling
    (Sumy State University, 2023) Petrakov, Y.V.; Ohrimenko, O.A.; Sikailo, M.O.; Myhovych, A.V.
    The cutting force in end milling is the essential perturbation of the machining system that limits the productivity of the process. Therefore, forecasting the cutting force when assigning the processing mode and the geometry of the allowance layer to be cut is an urgent task that requires an operational tool for its solution. The method of calculating the cutting force is presented, based on a mechanistic approach, when the geometric ratios of the cutter blades’ positions on the sweep determine the thickness of the undeformed chip. The developed algorithm calculates the cutting force by double integration, first by the length of the cutting edge and then by the number of such edges. The algorithm also allows the simulating of the outrun of the mill on the cutting force and its components. The created application program visualizes the simulating process by oscillograms of the cutting force components for both up and down milling. Experimental studies, in general, proved the adequacy of the developed modeling method. The created program is a tool for operational forecasting of the cutting force during the technological preparation of the end milling process in production.