Journal of Engineering Sciences / Журнал інженерних наук

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Movement monitoring system for a pneumatic muscle actuator
    (Sumy State University, 2023) Соколов, Олександр Сергійович; Соколов, Александр Сергеевич; Sokolov, Oleksandr Serhiiovych; Hosovsky, A.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    Recent advancements in soft pneumatic robot research have demonstrated these robots’ capability to interact with the environment and humans in various ways. Their ability to move over rough terrain and grasp objects of irregular shape, regardless of position, has garnered significant interest in developing new pneumatic soft robots. Integrating industrial design with related technologies holds great promise for the future, potentially bringing about a new lifestyle and revolutionizing the industry. As robots become increasingly practical, there is a growing need for sensitivity, robustness, and efficiency improvements. It is anticipated that the development of these intelligent pneumatic soft robots will play a critical role in serving the needs of society and production shortly. The present article is concerned with developing a system for monitoring a pneumatic robot’s parameters, including a spatial coordinate system. The focus is on utilizing the relationship between the coordinates and pressure to model the movement of the soft robot within the MATLAB simulation environment.
  • Item
    Rotor dynamics of turbocompressor based on the finite element analysis and parameter identification approach
    (Sumy State University, 2022) Вербовий, Антон Євгенович; Вербовой, Антон Евгеньевич; Verbovyi, Anton Yevhenovych; Хоменко, Владислав Володимирович; Хоменко, Владислав Владимирович; Khomenko, Vladyslav Volodymyrovych; Neamtu, C.; Pavlenko, V.; Симоновський, Віталій Іович; Симоновский, Виталий Иович; Symonovskyi, Vitalii Iovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    The article is devoted to improving methods for designing a finite element model of rotor dynamics. For this purpose, numerical implementation of the authors’ computer program “Critical frequencies of the rotor” was developed based on the computer algebra system MathCAD. As a result of the scientific work, a refined mathematical model of rotor dynamics using finite beam elements was created. This model considers the dependence of the radial stiffness characteristics of the bearing supports on the values of the critical frequencies. The reliability of the mathematical model was justified by the permissible differences of the obtained results within 2% compared with the results of finite element analysis using the ANSYS software. The theorem was also proven by the mutual location of the spectra of the natural and critical frequencies. Overall, the proposed scientific approach reduces preparation and machine time compared to numerical modeling using the ANSYS software without losing the accuracy of the calculations.
  • Item
    The efficiency of collaborative assembling cells
    (Sumy State University, 2022) Андрусишин, Владислав Костянтинович; Андрусишин, Владислав Костантинович; Andrusyshyn, Vladyslav Kostiantynovych; Luscinski, S.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    To produce competitive products, it is necessary to consider their permanent modernization and adaptation to the emerging needs of a consumer. This feature of up-to-date production inevitably leads to design complexities. As a result, the complexity of a technological assembly process increases, which is a new challenge for enterprises. Simultaneously, in most cases, assembly operations are performed manually due to the complexity or impossibility of automating the assembling process for an extensive range of products. This fact is due to the insufficient flexibility of automation systems. Remarkably, this approach has significant drawbacks, i.e., low productivity and risk of chronic diseases. To solve this problem, the use of collaborative systems was proposed. Such systems have the advantages of both humans and automation tools. As a result, industrial robots can be applied as automation tools. However, when using industrial robots next to workers, the safety requirements are significantly increased since the infliction of industrial injuries is unacceptable. After considering all the above, the article deals with a new scientific and methodological approach to designing security systems of collaborative production cells and their design and effectiveness verification.
  • Item
    Impact of the closed, semi-opened, and combined contra-rotating stages on volume loss characteristics
    (Sumy State University, 2022) Куліков, Олександр Андрійович; Куликов, Александр Андреевич; Kulikov, Oleksandr Andriiovych; Ратушний, Олександр Валерійович; Ратушный, Александр Валерьевич; Ratushnyi, Oleksandr Valeriiovych; Moloshnyi, O.; Івченко, Олександр Володимирович; Ивченко, Александр Владимирович; Ivchenko, Oleksandr Volodymyrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych
    The article is devoted to studying the contra-rotating stages with different impellers and blade discs. Determining the reduction of volumetric losses by modeling the contra-rotating stages in the software package ANSYS CFX. The work aimed to create and study the flow and characteristics: semi-open, closed impellers, and blade discs. As a result of the work, the following contra-rotating stages were determined and compared: the semiopened impeller with the semi-opened blade disc; the closed impeller with the closed blade disc; the semi-opened impeller with the closed blade disc; the closed impeller with the semi-opened blade disc. As a result of research, fluid flows in contra-rotating stages and their characteristics in the form of pressure and efficiency were obtained. According to the obtained data, the expediency of using contra-rotating stages as a working body of the pump is written.