Journal of Engineering Sciences / Журнал інженерних наук

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326

Browse

Search Results

Now showing 1 - 10 of 21
  • Item
    Efficiency Investigation of Coffee Production Waste Drying by Filtration Method
    (Sumy State University, 2024) Ivashchuk, O.S.; Atamanyuk, V.M.; Chyzhovych, R.A.
    This article presents the results of determining the technologically feasible parameters of filtration drying of coffee production waste based on experimental data on the kinetics of material drying and the hydrodynamics of thermal agent filtration. The lowest total energy costs were observed with the following process parameters: the material layer height of 120 mm, the thermal agent temperature of 90 °C, the velocity through the stationary layer of 1.76 m/s, and the specific energy consumption of 5857 kJ per 1 kg of water. Based on the determined technologically feasible process parameters, an evaluation of the filtration drying method for coffee production waste was performed at an industrial installation. According to the calculation, using the filtration method, 1164 kW h of energy was required to dry about 1000 kg of coffee production waste. A total energy of about 1.65 kW h/kg was required to remove 1 kg of moisture from the material in an industrial filtration drying installation. The results were compared with a drying material with similar initial parameters. It was calculated that to dry 1000 kg of coffee production waste in a rotary dryer, it is necessary to spend about 1625 kW h, and the total energy consumption for removing 1 kg moisture from the studied material is approximately 2.37 kW h/kg. Thus, for a similar output of about 1000 kg/h, filtration drying can reduce energy consumption by about 465 kW·h and reduce the required drying time by more than 20 times. The overall economic effect of using the filtration drying method in industry is expected to be higher, given the significant heat losses to the environment for a rotary dryer due to its large size, long drying time, design features, and the need for energy-intensive auxiliary equipment. After calculating the energy consumption per 1 kg of dry material, it is necessary to spend 12 950 kJ/kg of dry matter, about 41.5 % less than the higher calorific value for experimental samples of briquetted solid fuel made from this material. This result makes it economically feasible to further dry coffee production waste to produce alternative solid fuels.
  • Item
    Simultaneous optimization of delamination and thrust force during drilling of GFRP laminate with a core drill by E-PIV method
    (Sumy State University, 2024) Babu, J.; Ramana, M.V.; Vivek, D.; Reddy, C.H.S.
    Aeronautical applications are permanently improving because of the excellent mechanical capabilities of glass-fiber-reinforced polymers (GFRP). Drilling is a vital machining task required to put the structures made of these composites together. However, these GFRP composites need more precise machining than metallic materials. This machining procedure causes delamination in the composite composition. Delamination at the exit and entry of drilled holes is a severe problem for composite materials. By maximizing the controlling variables of the drilling process, superior-drilled holes can be generated. The present study aims to optimize the drilling settings by considering various performance aspects using the entropy weight-coupled proximity indexed value method. For this study, Taguchi’s L25 5-level orthogonal array was employed. The responses are at the exit, entry delamination, and thrust force, while the control variables are feed rate and spindle speed. The findings indicate that more significant spindle speeds and smaller feed rates improve drilling success. Furthermore, current research indicates that feed rate has a more significant impact on the quality of the drilling holes.
  • Item
    Effect of erosion on surface roughness and hydromechanical characteristics of abrasive-jet machining
    (Sumy State University, 2024) Baha, V.; Pitel, J.; Павленко, Іван Володимирович; Pavlenko, Ivan Volodymyrovych
    The article contains the fundamental results of the experimental and numerical investigations for pneumoabrasive unit nozzles with different geometries. The research was purposed by the pressing need to develop an inexpensive and effective working nozzle design of the air-abrasive unit which can be applied for surface processing before some technological processes are performed, as well as for surface coating, descaling after thermal treatment, processing of hollow holes of the crankshafts, smoothing of the inner surfaces of the narrow channels between the impeller blades after electric discharge machining for ultrahigh-pressure combination compressors. Several designs were considered, ranging from the simplest to those with a complicated inner channel geometry. The impact of the nozzle material and challenging inner surface application on its characteristics has also been studied. The research was done using the application of modern CFD complexes for numerical modeling of the air-abrasive mixture discharge from the working nozzle of the pneumo-abrasive unit. In addition, physical experimentation was provided. The methods applied in the research allow for profound, systematic research of spraying units operating on the air-abrasive mixture within a wide range of geometrical and mode parameters. The novelty of the gained results lies in the development of the mathematical model of the pneumo-abrasive nozzle operating process, the working out of a cheaper nozzle design, getting information about air-abrasive mixture distribution along the nozzle length, giving practical recommendations for calculation and designing a working nozzle for the jet-abrasive unit.
  • Item
    Heat utilization in boiler plants by using liquid-vapor jet apparatus
    (Sumy State University, 2024) Шарапов, Сергій Олегович; Sharapov, Serhii Olehovych; Krmela, J.; Гусєв, Данило Максимович; Husiev, Danylo Maksymovych; Вербицький, Антон Романович; Verbytskyi, Anton Romanovych; Bocko, J.
    The article solves the problem of heat utilization from combustion products in boiler plants. The proposed solution involves extracting heat to preheat the network water for the heating system and implementing additional heat utilization using a liquid-vapor jet apparatus. This will allow for additional working steam generation in the main steam generator and the unit based on the liquid-vapor jet apparatus. The article provides schemes and descriptions of traditional and proposed plants, indicating their design differences from the basic scheme. Comparative thermodynamic analysis of the proposed installation for additional recuperative heat utilization and the basic scheme is carried out, in which heat utilization occurs due to the extraction of heat from combustion products to preheat the network water of the heating system. As a result, the main thermodynamic parameters of the cycles of basic and proposed schemes are obtained, and the values of the capacities on the apparatuses included in these installations are determined. The energetic potential obtained from additional heat utilization is 8 %, which can be used for electricity generation. Exergy analysis assesses the efficiency of additional heat utilization in boiler plants using units based on liquid-vapor jet apparatus. As a result of the exergy analysis, the value of the exergetic efficiency of the scheme with additional heat utilization was obtained, which is 1.47 times higher than that of the basic scheme. A thermoeconomic analysis was performed to determine the cost values. Implementing the new scheme enables reducing the specific cost of the heating unit by 48 % and increasing the amount of steam generated in the installation by an additional 18 %.
  • Item
    Effect of air intake temperatures on the air-water harvester performance
    (Sumy State University, 2024) Mirmanto, M.; Nurpatria, N.; Hendra, J.K.
    During the dry season, some parts of Indonesia experience drought and a clean water crisis, resulting in scarcity and difficulty in drinking water. One of the solutions to solve this problem is to use an air-water harvester machine that produces water from the air. Since the intake air temperature affected the water yield, the article examined the relationship between the engine intake air temperature and the machine’s performance. The study aimed to determine the performance of the air-water harvester machine at various air intake temperatures. The research was carried out experimentally for a refrigerant working fluid R134a. The rotary-type 1/4 PK compressor was used to realize the research. The air temperatures entering the condensing unit varied between 30, 35, and 40 °C. The results showed that the highest average water mass obtained was 0.34 kg at a temperature variation of 30 °C. The highest total heat absorbed by the condensing unit from the air of 184 W occurred at a temperature variation of 40 °C. Overall, an increase in the air intake temperatures allowed for a decrease in the performance of the air-water harvester machine by more than 5 %.
  • Item
    The influence of the design features of the submersible pump rotor on the vibration reliability
    (Sumy State University, 2024) Маківський, Олексій Сергійович; Makivskyi, Oleksii Serhiiovych; Кондусь, Владислав Юрійович; Kondus, Vladyslav Yuriiovych; Pitel, J.; Сотник, Микола Іванович; Sotnyk, Mykola Ivanovych; Андрусяк, Владислав Олегович; Andrusiak, Vladyslav Olehovych; Полковниченко, Вадим Валентинович; Polkovnychenko, Vadym Valentynovych; Муштай, Максим Валерійович; Mushtai, Maksym Valeriiovych
    Pumping equipment consumes about 20 % of the electrical energy produced by humankind. A significant, even drastic, reduction in the weight and size indicators of pumping equipment leads to a decrease in the cost price and, therefore, competitiveness of such products in the market. Simultaneously, it makes it possible to use more valuable and high-quality construction materials and technologies that improve the reliability of equipment and its energy efficiency, which in turn is a clear step in solving many UN Sustainable Development Goals (SDGs). According to the research results, it was proved that by increasing the frequency of the drive, it is possible to reduce the mass and size indicators of the submersible pump for the needs of the critical infrastructure sector by reducing the number of stages. Mainly, the amplitudes of oscillations near the rotation frequency are 12–22 % and do not exceed 35 % of the gaps in the seals, as required by the available international standards to ensure the guaranteed vibration reliability of the pump. Overall, using a bearingless support design will significantly increase the reliability of the developed pump.
  • Item
    Improvement of the quality of 3D printing in the mass production of parts
    (Sumy State University, 2023) Rud, V.D.; Zaika, O.M.; Samchuk, L.M.; Povstyana, Y.S.
    The article highlights the experience of using 3D printing at automotive enterprises manufacturing automotive wiring. The primary attention was paid to optimizing technologies and modernizing equipment in 3D printing in production conditions. This helped to improve the printing quality at the enterprise and reduce energy consumption during mass printing of parts. The article aims at improving quality and reducing energy consumption during 3D printing in serial production conditions. The technique’s novelty consists of a complex of production optimizations combined into a production rack to improve 3D printing. During the research, negative factors affecting print quality and their elimination were analyzed. An experimental setup for 9 printers was created. As a result, ways to increase energy efficiency according to environmental standards were implemented under the mass production of 3D parts. Overall, the applied technology allowed for reducing the time for the development of new prototypes. This made it possible to reduce the produced parts cost and allowed for implementing urgent changes in manufacturing enterprises.
  • Item
    Energy-saving individual heating systems based on liquid-vapor ejector
    (Sumy State University, 2023) Шарапов, Сергій Олегович; Шарапов, Сергей Олегович; Sharapov, Serhii Olehovych; Bocko, J.; Євтушенко, Святослав Олександрович; Евтушенко, Святослав Александрович; Yevtushenko, Sviatoslav Oleksandrovych; Панченко, Віталій Олександрович; Панченко, Виталий Александрович; Panchenko, Vitalii Oleksandrovych; Скиданенко, Максим Сергійович; Скиданенко, Максим Сергеевич; Skydanenko, Maksym Serhiiovych
    The problem of increasing the efficiency of individual heating systems is solved by using heat pumps based on a liquid-vapor ejector with the working fluid R718 (water). The research object was the working process of the liquid-vapor ejector, based on the principle of jet thermal compression. It involves the generation of vapor in the nozzle of the motive flow of the liquid-vapor ejector and does not require its supply from an external source. Schemes and descriptions of the traditional system and the proposed scheme were given. Their difference from the traditional ones was indicated according to the schematic solution and working cycle. The article compared the proposed schemes’ thermodynamic calculation with the working flow R718 and traditional heat pump systems with carried-out refrigerants R134a, R410a, and R32. As a result, the values of the thermodynamic parameters of all system components were obtained. The coefficients of performance (COP) for the traditional and proposed cycles were determined. Applying the new scheme made it possible to increase the COP by an average of 40 %. An exergy analysis assessed the expediency of implementing vacuum units based on liquid-vapor ejectors in individual heating systems. This made it possible to compare systems that use several types of energy (e.g., electrical, thermal) and to determine their efficiency with high accuracy. As a result of the exergy analysis, the value of the proposed scheme’s exergy efficiency was obtained.
  • Item
    Development of energy enterprises in the context of green transformation
    (Sumy State University, 2023) Plotkin, J.; Levchenko, N.; Shyshkanova, G.; Levchenko, S.
    The article argues that the search for effective tools to ensure the economically secure future of energy companies and their development in the context of green transformation is necessary due to the speed of global transformations, the priority of reducing dependence on fuel and energy imports, the development of renewable energy sources, the instability of the environment for the functioning of energy companies (as a result of russia’s fullscale invasion of Ukraine) and their position both on the Ukrainian and European energy markets. The reality of the energy sector in the country and the steps for the recovery of the energy companies determined by the Economic Recovery Plan of Ukraine were analyzed. The evidence shows that the legislative amendments aimed at stabilizing the energy sector and solving key issues lack efficiency and cannot ensure the vital activity of energy enterprises and their development in the conditions of climate-neutral transformation. A methodology was proposed to assess the progress of the carbon-neutral development of energy companies, which should become the basis for attracting ESG investing. The vectors for creating a favorable environment for environmental, social, and governance (ESG) investing were identified as a unique opportunity to ensure the economically secure future of energy companies and their development in the context of green transformation.
  • Item
    Optimization of greenhouse microclimate parameters considering the impact of CO2 and light
    (Sumy State University, 2023) Соколов, Сергій Вікторович; Соколов, Сергей Викторович; Sokolov, Serhii Viktorovych
    The most critical parameters of the microclimate in greenhouses are air and soil temperature, air and soil moisture, plant illumination, and carbon dioxide (CO2) concentration in photosynthesis. New energy sources and resource-efficient management of microclimate parameters in greenhouses can be utilized to reduce greenhouse crop cultivation costs and increase profits. As the plant mass increase depends on photosynthesis, which involves the formation of glucose in the plant chloroplasts from water and carbon dioxide under the influence of light radiation, the saturation of greenhouses with carbon dioxide has become popular in recent decades. However, insufficient light slows down the process of glucose formation, while excessive light intensity negatively affects photosynthesis. Based on the experimentally proven Van Henten model of plant growth and using the MATLAB environment, a methodology was proposed, and the dependence between CO2 concentration and leaf lettuce illumination power required for maximum photosynthesis was determined. It is equal to 0.57 ppm/(W/m2 ). Such dependence should be considered when designing control systems to reduce resource and energy costs for greenhouse crop cultivation while ensuring maximum yield.