Journal of Engineering Sciences / Журнал інженерних наук

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Cutting forces simulation for end milling
    (Sumy State University, 2023) Petrakov, Y.V.; Ohrimenko, O.A.; Sikailo, M.O.; Myhovych, A.V.
    The cutting force in end milling is the essential perturbation of the machining system that limits the productivity of the process. Therefore, forecasting the cutting force when assigning the processing mode and the geometry of the allowance layer to be cut is an urgent task that requires an operational tool for its solution. The method of calculating the cutting force is presented, based on a mechanistic approach, when the geometric ratios of the cutter blades’ positions on the sweep determine the thickness of the undeformed chip. The developed algorithm calculates the cutting force by double integration, first by the length of the cutting edge and then by the number of such edges. The algorithm also allows the simulating of the outrun of the mill on the cutting force and its components. The created application program visualizes the simulating process by oscillograms of the cutting force components for both up and down milling. Experimental studies, in general, proved the adequacy of the developed modeling method. The created program is a tool for operational forecasting of the cutting force during the technological preparation of the end milling process in production.
  • Item
    Dimet Laval nozzle expansion section analysis and optimization
    (Sumy State University, 2021) Kun, T.; Jie, H.W.; Markovych, S.; Wang, Y.
    The cold spray technology mainly accelerates the powder in the Laval nozzle by gas, ensuring that the powder has a greater velocity at the exit of the Laval nozzle, and achieving high-efficiency deposition on the substrate, thereby obtaining a better performance of the deposition coating. The article uses numerical simulation to study the influence of the length of the expansion section of the Dimet Laval nozzle on the acceleration effect of Al powder. The results show that the length of the expansion section of the nozzle is an essential factor affecting the velocity of the Al powder at the nozzle outlet. Through analysis, it can be known that the pressure inlet range of the Dimet Laval nozzle is 1.0 MPa, and the length of the expansion section is about 210 mm, which can ensure that the Al powder has a better acceleration effect in the nozzle and has a better velocity at the nozzle outlet. It is recommended that the joints between the small sections of the nozzle expansion section should be kept as smooth as possible so that the accelerating effect of the accelerating gas on the Al powder is more uniform and stable.