Journal of Engineering Sciences / Журнал інженерних наук
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326
Browse
2 results
Search Results
Item Design and manufacturing of polymer composite materials using quality management methods(Sumy State University, 2023) Берладір, Христина Володимирівна; Берладир, Кристина Владимировна; Berladir, Khrystyna Volodymyrivna; Mitalova, Z.; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Trojanowska, J.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Руденко, Павло Володимирович; Руденко, Павел Владимирович; Rudenko, Pavlo VolodymyrovychMany factors influence the design and manufacturing of products from polymer composite materials. The expert assessment method was applied in the article for the corresponding analysis. A cause-and-effect diagram was built as a result of a preliminary analysis of the influence of factors on the primary indicator of product quality indicators (e.g., wear resistance). Based on the expert assessment results and quality function deployment analysis, the most critical factors affecting wear resistance were obtained: polymer brand, filler shape and size, technological parameters of mixing, pressing, sintering, and mechanical processing. Their impact was studied to establish quantitative dependencies. A stable value of the wear resistance of the product in the manufacturing process can be ensured by timely adjustment of the mixing, pressing, and sintering modes. As a result of the structural analysis of the process of developing materials with predetermined properties at the enterprise according to the IDEF0 methodology, the importance of assessing the risks associated with the process of multi-criteria optimization of their main quality indicators was confirmed.Item The efficiency of collaborative assembling cells(Sumy State University, 2022) Андрусишин, Владислав Костянтинович; Андрусишин, Владислав Костантинович; Andrusyshyn, Vladyslav Kostiantynovych; Luscinski, S.; Іванов, Віталій Олександрович; Иванов, Виталий Александрович; Ivanov, Vitalii Oleksandrovych; Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan VolodymyrovychTo produce competitive products, it is necessary to consider their permanent modernization and adaptation to the emerging needs of a consumer. This feature of up-to-date production inevitably leads to design complexities. As a result, the complexity of a technological assembly process increases, which is a new challenge for enterprises. Simultaneously, in most cases, assembly operations are performed manually due to the complexity or impossibility of automating the assembling process for an extensive range of products. This fact is due to the insufficient flexibility of automation systems. Remarkably, this approach has significant drawbacks, i.e., low productivity and risk of chronic diseases. To solve this problem, the use of collaborative systems was proposed. Such systems have the advantages of both humans and automation tools. As a result, industrial robots can be applied as automation tools. However, when using industrial robots next to workers, the safety requirements are significantly increased since the infliction of industrial injuries is unacceptable. After considering all the above, the article deals with a new scientific and methodological approach to designing security systems of collaborative production cells and their design and effectiveness verification.