Journal of Engineering Sciences / Журнал інженерних наук
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326
Browse
Search Results
Item Comprehensive Approach for Identification of Nonlinear Stiffness Characteristics of Bearing Supports for the Oxidizer Turbopump of the Liquid Rocket Engine(Sumy State University, 2018) Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Симоновський, Віталій Іович; Симоновский, Виталий Иович; Symonovskyi, Vitalii Iovych; Edl, M.; Pitel’, J.; Verbovyi, A.; Pavlenko, V.This article dials with the refinement of the mathematical and computational models of the oxidizer turbopump rotor considering bearing gaps, axial preloading, compliance of the housing parts and the effect of rotation. The loading scheme consists of four substeps is proposed considering preliminary displacement of the outer cage, axial displacement as a result of the support deformation due to the axial preloading force, radial displacement due to the support deformation, as well as centrifugal forces of inertia caused by rotation of the rotor with an inner cage. Modelling of contacts interactions using ANSYS software is carried out according to the appropriate models of contact behaviour. The contact areas between the rolling elements, inner and outer cases are obtained. The contact angle is determined. Isosurfaces of axial and radial displacements for the bearing supports are built. Nonlinear stiffness of bearing supports is determined as the tangent of the angle of inclination for the curve “radial load – radial displacement”. The proposed approach, which used for designing turbopump units for liquid rocket engines, will allow refining the reliable mathematical and computational models of rotor dynamics for turbopump units and providing appropriate computer simulation of forced oscillations of the rotor systems for given permissible residual imbalances considering nonlinear stiffness characteristics of bearing supports.Item Investigation of Non-linear Reactions in Rotors’ Bearing Supports of Turbo-pump Units for Liquid Rocket Engines(Sumy State University, 2018) Павленко, Іван Володимирович; Павленко, Иван Владимирович; Pavlenko, Ivan Volodymyrovych; Симоновський, Віталій Іович; Симоновский, Виталий Иович; Symonovskyi, Vitalii Iovych; Дем`яненко, Марина Миколаївна; Демьяненко, Марина Николаевна; Demianenko, Maryna Mykolaivna; Pitel’, J.; Verbovyi, A.Ye.This paper is aimed at refinement of the computational model of the turbopump rotor systems associated taking into consideration the effect of rotation of moving parts and compliance of bearing supports elements. The up-to-date approach for investigation of non-linear reactions in rotor’s bearing supports is proposed for turbo-pump units for liquid rocket engines. Five models for modelling contact interaction are investigated, and comparative bearing stiffness characteristics are given. The geometry of the housing and corresponding design scheme are set for each support due to the assembly drawing of the turbopump unit. Rotation of the shaft is taking into account by applying corresponding inertial forces to the inner cage of the bearing. Experimental points of the dependence “load – displacement” as the diagram “F – v” are built by the calculated points as an array of numerical simulation data, obtained by the ANSYS software. As a result of numerical simulation, including loading of the bearing support on the scheme “remote force” in a wide range of rotor speeds, the corresponding displacements are determined. The brandnew approach for evaluation of bearing stiffness coefficients is proposed based on the linear regression procedure. As a result, the obtained values of coefficients are summarized and approximated by the quadratic polynomials.