Journal of Engineering Sciences / Журнал інженерних наук
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/34326
Browse
5 results
Search Results
Item Optimization of Cdx transcription factors characteristics(Sumy State University, 2023) Javanbakht, T.This study presents a new application of TOPSIS for the optimization of transcription factors characteristics. This application is essential as it can help compare the characteristics of these proteins and determine the optimized output of their comparison with this decision-making method. The hypothesis in this article was that according to the previous study of the Cdx transcription factors, as the Cdx2 transcription factor showed more robust characteristics than Cdx1 and Cdx4, the TOPSIS method would show a better rank position of these first proteins in comparison with the two other ones. Moreover, the engrailed repressor domain EnRCdx1 used in the plasmid showed the reduction of the pax3 gene expression in comparison with the induced regulation of the gene expression with the production of the Cdx1, Cdx2, and Cdx4 transcription factors using the corresponding plasmids, the worst rank position with TOPSIS was expected for this repressor domain. The results obtained with this ranking method showed that the rank positions of the transcription factors and the repressor domain corresponded to their compared properties. Moreover, the change in the weight values of the candidates showed the modification of their distances from the best and worst alternatives and closeness coefficients. However, as expected, the candidates’ rank positions were unchanged, and the Cdx2 transcription factor was still the best candidate. The results of this article can be used in computer engineering to improve biological applications of these proteins.Item Optimization of graphene oxide’s characteristics with TOPSIS using an automated decision-making process(Sumy State University, 2023) Javanbakht, T.The present study focuses on a new application of TOPSIS to predict and optimize graphene oxide’s characteristics. Although this carbon-based material has been investigated previously, its optimization with this method using an automated decision-making process has not been performed yet. The major problem in the design and analysis of this nanomaterial is the lack of information on comparing its characteristics, which has led to the use of diverse methods that have not been appropriately compared. Moreover, their advantages and inconveniences could be investigated better once this investigation provides information on optimizing its candidates. In the current research work, a novel automated decision-making process was used with the TOPSIS algorithm using the Łukasiewicz disjunction, which helped detect the confusion of properties and determine its impact on the rank of candidates. Several characteristics of graphene oxide, such as its antibiofilm activity, hemocompatibility, activity with ferrous ions in hydrogen peroxide, rheological properties, and the cost of its preparation, have been considered in its analysis with TOPSIS. The results of this study revealed that the consideration of the criteria of this nanomaterial as profit or cost criteria would impact the distances of candidates from the alternatives. Moreover, the ranks of the candidates changed when the rheological properties were considered differently in the data analysis. This investigation can help improve the use of this nanomaterial in academic and industrial investigations.Item Automated decision-making with TOPSIS for water analysis(Sumy State University, 2022) Javanbakht, T.This paper aims to present a new application of TOPSIS with an automated decision-making process for the analysis of drinking water. For this purpose, the algorithm was modified with a fuzzy disjunction, and the maximal output values were set to one. The properties of drinking water, such as total dissolved solids, hardness, electrical conductivity, and cost, were the criteria analyzed in this study. These criteria were analyzed with unmodified and modified algorithms. Therefore, the modified TOPSIS was also used to optimize the parameters of the candidates. The appearance of the value of 1.0 in the algorithm’s output was due to the confusion of an individual’s categories of drinking water and undrinkable water. The advantage of this investigation was that, for the first time, it allowed automated decision-making to detect the drinking water in different samples and analyze them according to their characteristics. This would be important in developing new technologies for detecting and analyzing drinking water in the environment. The results of this paper can be applied in materials sciences and engineering.Item Optimization of machine learning algorithms for proteomic analysis using topsis(Sumy State University, 2022) Javanbakht, T.; Chakravorty, S.The present study focuses on a new application of the TOPSIS method for the optimization of machine learning algorithms, supervised neural networks (SNN), the quick classifier (QC), and genetic algorithm (GA) for proteomic analysis. The main hypotheses are that the change in the weights of alternatives could affect the ranking of algorithms. The obtained data confirmed this hypothesis for their ranking. Moreover, adding labor as a cost criterion to the list of criteria did not affect this ranking. This was because candidate 3 had better fuzzy membership degrees than the two other candidates concerning their criteria. This work showed the importance of the value of the fuzzy membership degrees of the cost criterion of the algorithms in their ranks. The values of the fuzzy membership degrees of the algorithms used for proteomic analysis could determine their priority according to their score differences. One of the advantages of this study was that the studied methods could be compared according to their characteristics. Another advantage was that the obtained results could be related to the new ones after improving these methods. The results of this work could be applied in engineering, where the analysis of proteins would be performed with these methods.Item Analysis of nanoparticles characteristics with TOPSIS for their manufacture optimization(Sumy State University, 2022) Javanbakht, T.The present study focuses on the comparative analysis of superparamagnetic iron oxide nanoparticles (SPIONs) characteristics with the TOPSIS method. The prediction of the characteristics of SPIONs is required for better manufacturing of these nanoparticles. Although the characteristics of these nanoparticles have been investigated, no research has been done on their comparison in order to determine which one of their surface functionalities would be more appropriate for their diverse applications. The objective of this study was to analyze the characteristics of SPIONs without or with surface charge with a prediction model and TOPSIS in order to determine the best nanoparticles. Moreover, the effect of inappropriate consideration of their cost criterion on their ranks was explored with the modified TOPSIS. This analysis showed that the characteristics of SPIONs such as antibiofilm activity, hemocompatibility, activity with hydrogen peroxide, rheological properties, and the labour of their chemical synthesis could affect their ranking. Neutral SPIONs, negatively charged SPIONs, and positively charged SPIONs were ranked as the first, second, and third candidates, respectively. However, the improvement of the activity of positively charged SPIONs with hydrogen peroxide showed an increase to 0.3 instead of 0.2, which resulted in a better rank of these nanoparticles in comparison with that of the same nanoparticles in the first analysis series. One of the advantages of this study was to determine the impact of the characteristics of SPIONs on their ranking for their manufacturing. The other advantage was getting the information for further comparative study of these nanoparticles with the others. The results of this work can be used in manufacturing engineering and materials science.