Damage behavior of multilayer axisymmetric shells obtained by the FDM method

dc.contributor.authorSalenko, O.
dc.contributor.authorDrahobetskyi, V.
dc.contributor.authorSymonova, A.
dc.contributor.authorOnishchenko, E.
dc.contributor.authorKostenko, A.
dc.contributor.authorTsurkan, D.
dc.contributor.authorVasiukov, D.
dc.date.accessioned2024-01-11T10:47:35Z
dc.date.available2024-01-11T10:47:35Z
dc.date.issued2024
dc.description.abstractThis research rigorously explores the additive synthesis of structural components, focusing on unraveling the challenges and defect mechanisms intrinsic to the fused deposition modeling (FDM) process. Leveraging a comprehensive literature review and employing theoretical modeling and finite element analysis using ANSYS software, the study meticulously investigates the behavior of multilayer axisymmetric shells under varying internal pressure conditions. Critical parameters are identified, and the impact of design factors, including material properties, geometric parameters, and internal pressure, is quantitatively assessed using a rich digital dataset. In a series of model experiments, the study reveals specific numerical results that underscore the progressive nature of damage development in FDM-produced multilayer axisymmetric shells. Notably, under increasing internal pressure, stresses on the tank’s inner walls reach up to 27.5 MPa, emphasizing the critical importance of considering material properties in the design phase. The research also uncovers that the thickness of tank walls, while significant in resulting stresses, does not markedly impact the damage development mechanism. However, it places a premium on selecting rational parameters for the honeycomb system, including shell thickness, honeycomb height, honeycomb wall thickness, and honeycomb cell size, to minimize stress concentrations and enhance structural integrity. The inclusion of honeycomb structures in the tank design, as evidenced by specific results, provides enhanced thermal insulation properties. The research demonstrates that this design feature helps localize damage and mitigates the formation of significant trunk cracks, particularly along generative cracks.en_US
dc.identifier.citationSalenko O., Drahobetskyi V., Symonova A., Onishchenko E., Kostenko A., Tsurkan D., Vasiukov D. (2024). Damage behavior of multilayer axisymmetric shells obtained by the FDM method. Journal of Engineering Sciences (Ukraine), Vol. 11(1), pp. D27–D35. https://doi.org/10.21272/jes.2024.11(1).d4en_US
dc.identifier.urihttps://essuir.sumdu.edu.ua/handle/123456789/94290
dc.language.isoenen_US
dc.publisherSumy State Universityen_US
dc.rights.uriccbync4en_US
dc.subjectadditive synthesisen_US
dc.subjecthoneycomb structuresen_US
dc.subjectdamage developmenten_US
dc.subjectfinite element analysisen_US
dc.titleDamage behavior of multilayer axisymmetric shells obtained by the FDM methoden_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Salenko_jes_1_2024.pdf
Size:
552.09 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.96 KB
Format:
Item-specific license agreed upon to submission
Description: